Sesuaidengan rumus jumlah n suku pertama deret geometri yang berbentuk fungsi eksponen dalam r, maka Sn bergantung pada nilai r n. Untuk sebarang nilai n (1, 2, 3, ) jumlah n suku pertama ditentukan berdasarkan rumus jumlah deret tersebut. Untuk n tak hingga (n → ∞), maka rumus jumlah n suku pertama masih dapat disederhanakan.
Deret aritmatika dan deret geometri adalah dua jenis deret bilangan yang membentuk suatu pola tertentu. Perbedaan dua jenis bilangan tersebut dibedakan berdasarkan bentuk pola yang dibentuk. Penjumlahan setiap suku barisan bilangan akan membentuk sebuah deret yang dapat dihitung dengan rumus jumlah n suku pertama Sn. Misalnya pada sebuah deret bilangan yang terdiri dari 8 bilangan yaitu 1, 6, 11, 16, 21, 26, 31, 36. Jumlah kedelapan bilangan tersebut dapat dihitung satu per satu, namun cara itu akan memakan waktu lama sehingga tidak dianjurkan. Sebagai penggantinya, perhitungan jumlah 8 suku pertama S8 untuk deret tersebut dapat dihitung dengan rumus Sn untuk deret bilangan yang sesuai. Pada barisa bilangan 1, 6, 11, 16, 21, 26, 31, 36 merupakan barisan aritmatika yang ditandai dengan beda b = 5 antar suku ke-n. Sehingga jumlah kedelapan suku pertama untuk barisan bilangan tersebut dapat dihitung dengan rumus Sn deret aritmatika. Ada dua macam rumus Sn yaitu rumus Sn untuk deret Aritmatika dan rumus Sn untuk deret geometeri. Bagaimana bentuk rumus jumlah n suku pertama deret Aritmatika? Bagaimana bentuk rumus jumlah n suku pertama deret Geometri? Sobat idschool dapat mencari tahu jawabannya melalui ulasan di bawah. Table of ContentsRumus Jumlah n Suku Pertama Sn Deret AritmatikaRumus Jumlah n Suku Pertama Sn Deret GeometriContoh Soal dan PembahasanContoh 1 – Penggunaan Rumus Jumlah n Suku Pertama SnContoh 2 – Penggunaan Rumus Jumlah n Suku Pertama Sn Contoh 3 – Penggunaan Rumus Suku ke-n Un Baca Juga Kumpulan Rumus-Rumus untuk Barisan Aritmatika dan Geometri Deret Aritmatika adalah barisan bilangan yang dapat dikenali dengan adanya beda b yang sama antara suku ke-n dengan suku n+1. Contoh deret aritmatika adalah 1, 2, 3, 4, 5, 6, dan seterusnya di mana pada deret aritmatika tersebut terdapat beda b = 1 antara suku ke n dengan suku ke-n+1. Contoh lain untuk deret aritmatika adalah 3, 8, 13, 18, 23, dan seterusnya memiliki beda b = 5. Untuk menjumlahkan bilangan-bilangan yang membentuk suatu deret aritmatika dapat menggunakan rumus jumlah n suku pertama deret aritmatika. Pada deret aritmatika yang terdiri dari delapan bilangan n = 8 maka jumlah delapan bilangan tersebut dapat diketahui dengan rumus S8 deret aritmatika. Pada deret aritmatika yang terdiri dari n bilangan maka jumlah n suku pertama dapat diketahui dengan rumus Sn deret aritmatika. Bentuk rumus jumlah n suku pertama deret aritmatika yang biasa digunakan ada dua. Bentuk pertama rumus jumlah n suku pertama adalah Sn = n/2a + Un, dan bentuk keduanya adalah Sn = n/2[2a + n-1b]. Baca Juga Aritmatika Sosial Rumus Jumlah n Suku Pertama Sn Deret Geometri Deret geometeri adalah barisan bilangan yang dapat dikenali melalui ladanya rasio r yang sama antara suku ke-n dengan suku ke-n+1. Contoh deret geometri adalah 2, 4, 8, 16, 32, dan seterusnya di mana pada deret geometri tersebut terdapat rasio r = 2 antara suku ke-n dengan suku ke-n+1. Penjumlahan bilangan-bilangan yang membentuk suatu deret geometri dapat menggunakan rumus jumlah n suku pertama deret geometri. Pada deret geometri yang terdiri dari delapan bilangan n = 8, jumlah delapan bilangan tersebut dapat diketahui dengan rumus S8 deret geometri. Pada deret aritmatika yang terdiri dari n bilangan maka jumlah n suku pertama dapat diketahui dengan rumus Sn deret geometri. Bentuk rumus jumlah n suku pertama deret geometri yang biasa digunakan ada dua. Bentuk pertama adalah rumus jumlah n suku pertama untuk deret geometri turun rasio kurang dari 1. Dan bentuk kedua adalah rumus jumlah n suku pertama untuk deret geometri naik rasio lebih dari satu. Baca Juga Barisan dan Deret Contoh Soal dan Pembahasan Beberapa contoh soal di bawah dapat sobat idshcool gunakan untuk menambah pemahaman bahasan di atas. Setiap contoh soal yang diberikan dilengkapi dengan pembahasannya. Sobat idschool dapat menggunakan pembahasan tersebut sebagai tolak ukur keberhasilan mengerjakan soal. Selemat Berlatih! Contoh 1 – Penggunaan Rumus Jumlah n Suku Pertama Sn Dari suatu barisan aritmetika, diketahui suku ketiga adalah 36 dan jumlah suku kelima dan ketujuh adalah 144. Jumlah sepuluh suku pertama deret tersebut adalah …. A. 840 B. 660 C. 640 D. 630 E. 315 Pembahasan Berdasarkan keterangan yang diberikan pada soal dapat diperoleh beberapa informasi seperti berikut. Barisan aritmetika Suku ketiga U3 = 36 a + 2b = 36 2b = 36 ‒ a b = 18 ‒ 1/2a Jumlah suku kelima dan ketujuh U5 + U7 = 144 a + 4b + a + 6b = 1442a + 10b = 144 a + 5b = 72 Menentukan nilai a dengan cara substitusi persamaan b = 18 ‒ 1/2a ke persamaan a + 5b = 72 seperti yang dilakukan pada cara berikut. a + 5b = 72 a + 518 ‒ 1/2a = 72 a + 90 ‒ 5/2a = 72 a ‒ 5/2a = 72 ‒ 90 ‒3/2a = ‒18 a = ‒18 × ‒2/3 = 12 Menentukan nilai b b = 18 ‒ 1/2a b = 18 ‒ 1/2 × 12 b = 18 ‒ 6 = 12 Menghitung jumlah sepuluh suku pertama S10 S10 = 10/22×12 + 9×12 S10 = 524 + 108 S10 = 5 × 132 = 660 Jadi, jumlah sepuluh suku pertama deret tersebut adalah 660. Jawaban B Contoh 2 – Penggunaan Rumus Jumlah n Suku Pertama Sn PembahasanBilangan kelipatan 3 dan 4 antara 200 dan 450 adalah bilangan-bilangan yang habis dibagi KPK dari 3 dan 4 yaitu 12. Bilangan kelipatan 12 pertama yang berada antrara 200 dan 450 adalah 204. Sementara bilangan kelipatan 12 terakhir yang berada antara 200 dan 450 adalah 444. Berdasarkan soal maka dapat dibentuk deret aritmatika dengan beda b = 12, suku pertama a = 204, dan suku terakhir Un = 444. Deret matematika tersebut adalah 204 + 216 + 228 + … + 444. Pertama, perlu untuk mengetahui banyak suku bilangan n untuk bilangan kelipatan 3 dan 4 antara 200 dan 450. Un = a + n ‒ 1b444 = 204 + n ‒ 1 × 12444 ‒ 204 = 12n ‒ 12240 + 12 = 12n12n = 252n = 252/12 = 21 Selanjutnya, jumlah 21 suku pertama untuk deret aritmatika 204 + 216 + 228 + … + 444 dapat dihitung seperti cara berikut. Jadi, jumlah semua bilangan kelipatan 3 dan 4 antara 200 dan 450 adalah B Contoh 3 – Penggunaan Rumus Suku ke-n Un Bakteri jenis A berkembang biak menjadi dua kali lipat setiap lima menit. Pada waktu lima belas menit pertama banyaknya bakteri ada 400. Banyaknya bakteri pada waktu tiga puluh lima menit pertama adalah …. A. 640 bakteri B. bakteri C. bakteri D. bakteri E. bakteri Pembahasan Berdasarkan keterangan yang diberikan pada soal dapat diperoleh beberapa informasi seperti berikut. Bakteri jenis A berkembang biak menjadi dua kali lipat r = 2 setiap lima menit t = 5. Misalkan banyak bakteri saat t = 0 menit adalah U1 = a , di mana n = t/5 + 1 = 0/5 + 1 = 0 + 1 = 1. Banyak bakteri saat lima menit n = t/5 + 1 = 5/5 + 1 = 1 + 1= 2 adalah U2 = ar = 2a Pada waktu lima belas menit pertama n = t/5 + 1 = 15/5 + 1 = 3 + 1 = 4 banyaknya bakteri ada 400. Suku ke-n = 4 U4 = ar4-1 = ar3 = 400 Menentukan n untuk waktu tiga puluh lima menit pertama n = t/5 + 1 n = 30/5 + 1 n = 6 + 1 = 7 Menghitung banyaknya bakteri untuk n = 7 U7 = ar7-1 = ar6 U7 = ar3 × r3U7 = 400 × 23 = 400 × 8 = Jadi, banyaknya bakteri pada waktu tiga puluh lima menit pertama adalah bakteri. Jawaban B Demikianlah tadi ulasan rumus jumlah n suku pertama Sn untuk deret Aritmatika dan Geometri. Terima kasih sudah mengunjungi idschooldotnet, semoga bermanfaat! Baca Juga Pola Bilangan 2 Tingkat

Ingat Rumus jumlah n suku pertama deret geometri : Perhatikan rumus jumlah: sehingga dapat diperoleh nilai a = 6 dan r = 2. Jadi, nilai a + r = 6 + 2 = 8. Mau dijawab kurang dari 3 menit? Coba roboguru plus! 4rb+ 4.3 (6 rating) Pertanyaan serupa.

Deret Bilangan Deret bilangan adalah salah satu cabang ilmu dalam matematika yang masih ada hubungannya dengan barisan bilangan , yang sebelunya telah di bahas . Deret bilangan juga terdiri dari dua macam , seperti halnya barisan bilangan yaitu deret bilangan aritmatika dan deret bilangan geometri . Langkah awal untuk mempelajari deret bilangan aritmatika dan geometri adalah kita harus memahami terlebih dahulu mengenai pengertian deret bilangan itu sendiri .Mari kita pelajari bersama A. Pengertian Dan Macam Deret Bilangan Deret bilangan yaitu jumlah dari suku – suku dari suatu barisan . Jika U1 , U2 , U3 , U4 , . . . .Disebut dengan barisan bilangan , maka bentuk deret bilangan adalah U1 + U2 + U3 +… Contoh 3 + 7 + 11 + 15 + . . . Macam – macam deret bilangan yaitu Deret bilangan aritmatika Deret bilangan geometri B. Definisi Deret bilangan aritmatika dan deret bilangan geometri Deret Bilangan Aritmatika Deret aritmatika , yaitu suatu jumlah dari suku – suku barisan bilangan aritmatika . Jika a , a+b , a+2b , a+3b , a+4b , . . . .a+n-1b adalah barisan bilangan aritmatika maka bentuk dari deret aritmatika adalah a+ a+b + a+2b + a+3b + a+4b + . . . . Rumus Jumlah deret aritmatika suku ke n adalah Sn = 1/2 n a+ Un atau Sn = 1/2n [ 2a + n – 1 b ] Keterangan Sn = jumlah suku ke n n = Banyaknya suku b = rasio atau beda Contoh soal 4 + 9 + 14 + 19 + . . . Dari deret bilangan diatas , tentukan S30 = . . ? Penyelesaian Diketahui a = 4 , b = 5 Un = a + n – 1 b U30 = 4 + 30 -1 5 = 4 + = 4 + 145 = 149 maka , S30 adalah Cara 1 Sn = 1/2 n a+ Un S30 = 1/2 . 30 4 + 149 = 15 x 153 = 2295 Cara 2 Sn = 1/2n [ 2a + n – 1 b ] S30 = 1/2 30 [ + 30 – 1 5 ] = 15 [ 8 + 29 .5 ] = 15 8 + 145 = 15 153 = 2295 2. Tentukan nilai n dan sn dari deret aritmatika dibawah ini 3 + 7 + 11 + 15 + . . .+ 199 Penyelesaian Diketahui a = 3 , b = 4 Ditanya a. n = . . . b. Sn = . . . Jawab a. Un = a + n -1 b 199 = 3 + n – 1 4 199 = 3 + 4n -4 199 = -1 + 4n 200 = 4n 50 = n b. cara 1 Sn = 1/2 n a+ Un S50 = 1/2 .50 3 + 199 = 25 202 = 5050 Cara 2 Sn = 1/2n [ 2a + n – 1 b ] S50 = 1/ [ + 50 – 1 4 ] = 25 [ 6 + ] = 25 6 + 196 = 25 202 = 5050 3. Tentukan Sn , dari deret aritmatika berikut 1 + 5 + 9 + 13 + . . . + U10 Penyelesaian Diketahui a = 1 , b = 4 , n = 10 Ditanya Sn = . . . ? Jawab Sn = 1/2n [ 2a + n – 1 b ] S10 = 1/ [ + 10 – 1 4 ] = 5 [ 2 + ] = 5 2 + 36 = 190 4. Diketahui suatu deret aritmatika suku ke5 = 13 dan suku ke 9 = 21 . Tentukan a. nilai a dan b b. U10 c. S11 Penyelesaian ; a. U5 = 13 —> a + 4b = 13 U9 = 21 —> a+ 8b = 21 _ -4 b = -8 b = 2 a + 4b = 13 a + = 13 a + 8 = 13 a = 5 b. U10 = a + 9b U10 = 5 + 9 .2 u10 = 5 + 18 = 23 c. Sn = 1/2n [ 2a + n – 1 b ] S11 = 1/2 .11 [ + 11 – 1 2 ] S11 = 1/2 .11 [ 10 + ] S11 = 1/ 30 S11 = 165 2. Deret Bilangan Geometri Deret bilangan geometri , yaitu jumlah dari barisan bilangan geometri . Jika bentuk barisan bilangan geometri adalah a , , , , , . . . . maka bentuk dari deret bilangan geometri adalah a + + + + + . . . . Jumlah n suku pertama dari deret geometri atau yang dilambangkan dengan Sn , adalah Sn = a + + + + + . . . . Apabila rumus di atas kita kalikan dengan r . maka akan menghasilkan rums sebagai berikut rSn = + + + + + . . . + Dari kedua persamaan diatas , kita kurangkan maka akan dihasilkan sebagai beriikut Sn = a + + + + + . . . . rSn = + + + + + . . . + _ Sn – rSn = a – Sn 1 – r = a 1 – rn Sn = a – a rn / 1 – r Sn = a 1 – rn / 1 – r Jadi , dapat kita simpulkan bahwa , rumus jumlah n suku pertama dalam deret geometri adalah Sn = a – a rn / 1 – r atau Sn = a 1 – rn / 1 – r , dengan r ≠ 1 Untuk lebih jelasnya lagi , maka perhatikan contoh – contoh soal di bawah ini Diketahui sebuah deret geoetri , dimana U3 = 18 , dan U6 = 486 . Tentukan a. a dan r b. S10 Penyelesaian a. U6 = 486 –> 5= 486 U3 = 18 –> = 18 U6 / U3 = 486 / 18 —–> 5 / = 486 / 18 r3 = 27 r = 3 = 18 = 18 = 18 a = 2 b. Sn = a 1 – rn / 1 – r S10 = 2 1 – 310 / 1 – 3 S10 = 2 -59048 / -2 S10 = 59048 2. Perhatikan deret bilangan geometri berikut 2 + 6 + 18 + 54 + . . . . .+ 1458 , tentukan Sn ! Penyelesaian Diketahui a = 2 dan r = 3 Jawab Langkah pertama mencari n terlebih dahulu , yaitu dengan cara Un = 1458 = 2 . 3n-1 1458 /2 = 3n-1 729 = 3n-1 36 = 3n-1 n – 1 = 6 n = 7 Selanjutnya , tinggal masukkan ke dalam rumus Sn = a 1 – rn / 1 – r S7 = 2 1- 37 / 1- 3 S7 = 2 1-2187 / -2 S7 = 2187 Demikia penjelasan mengenai Deret Aritmtika dan deret geometri . Inti dari deret adalah menjumlahkan semua barisan bilangan baik aritmatika atau geometri . Semoga dengan penjelasan di atas , dapat membantu menyelesaikan permasalahan dalam menyelesaikan soal yang berhubungan dengan deret bilangan . Artikelini membahas tentang rumus jumlah n suku pertama deret geometri atau Sn Geometri, beserta contoh soal dan pembahasan. Kalau pernah mendengar tentang deret aritmatika, kemungkinan besar enggak asing dengan deret geometri. Dalam artikel ini, gue akan membahas bagaimana rumus mencari jumlah n suku pertama deret geometri, tetapi seperti
Jadi jumlah 8 suku pertama deret geometri tersebut adalah 765. C. Bentuk Lain Rumus Sn untuk Deret Geometri Rumus jumlah n suku pertama deret geometri untuk r > 1 dapat diubah menjadi bentuk yang sederhana dengan dijabarkan terlebih dahulu sebagai berikut: ⇒ Sn = a(r n − 1) / (r − 1) ⇒ Sn = (ar n − a) / (r − 1)
Misaldiberikan sebuah barisan aritmatika dengan jumlah suku sembilan sebagai berikut : 4, 6, 8, 10, 12, 14, 16, 18, 20. Jika dinyatakan dalam bentu deret, maka akan menjadi 4 + 6 + 8 + 10 + 12 + 14 + 16 + 18 + 20. Langkah pertama tuliskan deret tersebut kemudian tuliskan urutan terbaliknya. Semula S 9 = 4 + 6 + 8 + 10 + 12 + 14 + 16 + 18 + 20.
Nilain bisa ditentukan melalui rumus umum suku ke-n deret aritmatika jika nilai suku ke-n, beda, dan juga suku pertama diketahui. Un = a + (n-1) b. Un: suku ke n (n = 1, 2, 3, ) a: suku pertama (U1) n: bilangan real (n - 1, 2, 3, ) b: beda deret aritmatika. Untuk lebih memahami tentang nilai n, berikut contoh soal menentukan nilai n
L1W3jWp.
  • grkusju10z.pages.dev/415
  • grkusju10z.pages.dev/508
  • grkusju10z.pages.dev/407
  • grkusju10z.pages.dev/242
  • grkusju10z.pages.dev/42
  • grkusju10z.pages.dev/116
  • grkusju10z.pages.dev/158
  • grkusju10z.pages.dev/23
  • rumus jumlah n suku pertama deret geometri